Solubility of Methane in Ionic Liquids for Gas Removal Processes Using a Single Multilayer Perceptron Model

In this work, four hundred and forty experimental solubility data points of 14 systems composed of methane and ionic liquids are considered to train a multilayer perceptron model. The main objective is to propose a simple procedure for the prediction of methane solubility in ionic liquids. Eight mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-03, Vol.12 (3), p.539
Hauptverfasser: Faúndez, Claudio A., Fierro, Elías N., Muñoz, Ariana S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, four hundred and forty experimental solubility data points of 14 systems composed of methane and ionic liquids are considered to train a multilayer perceptron model. The main objective is to propose a simple procedure for the prediction of methane solubility in ionic liquids. Eight machine learning algorithms are tested to determine the appropriate model, and architectures composed of one input layer, two hidden layers, and one output layer are analyzed. The input variables of an artificial neural network are the experimental temperature (T) and pressure (P), the critical properties of temperature (Tc) and pressure (Pc), and the acentric (ω) and compressibility (Zc) factors. The findings show that a (4,4,4,1) architecture with the combination of T-P-Tc-Pc variables results in a simple 45-parameter model with an absolute prediction deviation of less than 12%.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12030539