Optimization Design of Broadband Doherty PA Using Fragment-Type Matching Network Based on Dual-State Impedance Objective Function
In this paper, an optimization design of broadband Doherty power amplifier (DPA) is presented for the extension of bandwidth. A dual-state impedance objective function is utilized in the optimization of the carrier and peaking output matching networks (OMNs) to satisfy the load impedance constraints...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-04, Vol.71 (4), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an optimization design of broadband Doherty power amplifier (DPA) is presented for the extension of bandwidth. A dual-state impedance objective function is utilized in the optimization of the carrier and peaking output matching networks (OMNs) to satisfy the load impedance constraints at back-off output power and saturation, respectively. Unlike conventional method, a novel impedance constraint strategy is proposed by employing an impedance constraint circle in Smith chart, which can more fully utilize the impedance region obtained from load-pull simulations. Moreover, to increase design flexibility, a fragment-type matching circuit is employed in the OMN optimization design together with the dual-state impedance objective function. Experimental results demonstrate a 1.2 to 2.6 GHz (74% fractional bandwidth) broadband DPA with a drain efficiency of 49.7%-53.5% measured at 6 dB back-off and a saturated output power of higher than 43 dBm. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2023.3332178 |