Deep learning based Glaucoma Network Classification (GNC) using retinal images

The proposed deep learning framework for glaucoma classification addresses critical challenges of limited data and computational costs. Employing data augmentation and normalization techniques, the three‐stage model, utilizing InceptionV3 and ResNet50, achieves high training (99.3% ‐ 99.8%) and test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2024-03, Vol.34 (2), p.n/a
Hauptverfasser: Kiyani, Iqra Ashraf, Shehryar, Tehmina, Khalid, Samina, Jamil, Uzma, Muzaffar Syed, Adeel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proposed deep learning framework for glaucoma classification addresses critical challenges of limited data and computational costs. Employing data augmentation and normalization techniques, the three‐stage model, utilizing InceptionV3 and ResNet50, achieves high training (99.3% ‐ 99.8%) and testing accuracy (91.6% ‐ 92.12%) on a dataset comprising 16,328 images from fused public datasets. This outperforms existing automated models. The approach leverages transfer learning and convolutional neural networks, showcasing its potential for accurate and timely glaucoma diagnosis. However, ongoing validation on diverse datasets and ethical considerations regarding fairness and transparency in medical applications remain essential. The model's reliability suggests its promising role in aiding early glaucoma detection, potentially averting irreversible vision impairment.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.23003