Evolution of hot metal gas forming (HMGF) technologies and its applications: a review
Hot metal gas forming (HMGF) of tubular profiles enables intricate designs for lightweight material production. HMGF showed an immense manufacturing potential, due to the excellent strength and toughness of the formed parts, better material formability, and better dimensional accuracy of the final p...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-04, Vol.131 (7-8), p.3441-3466 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hot metal gas forming (HMGF) of tubular profiles enables intricate designs for lightweight material production. HMGF showed an immense manufacturing potential, due to the excellent strength and toughness of the formed parts, better material formability, and better dimensional accuracy of the final product. Existing part production methods, such as weld-assembly of stampings and hydroforming, have significant problems in terms of residual tensile stresses, which can affect the formability and negatively affect the performance capability of the structural components. Due to the lack of a detailed review report, the primary focus of this review article is to provide in-depth analysis of recent developments, innovations, and challenges in HMGF while comparing it to existing manufacturing methods. This examination includes different essential aspects, such as the process principle, material applications, deformation mechanisms, process parameter optimization, and microstructure modeling. Additionally, the article explores future research directions and the potential of HMGF in the manufacturing industry. Our review underscores the critical importance of optimizing process parameters and conducting microstructural analysis to meet evolving challenges. Further research on material models and the interplay of microstructural variables is essential for advancing the field and facilitating precise predictions in HMGF processes. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-024-13289-1 |