Carving model-free inference

Complex studies involve many steps. Selecting promising findings based on pilot data is a first step. As more observations are collected, the investigator must decide how to combine the new data with the pilot data to construct valid selective inference. Carving, introduced by Fithian, Sun and Taylo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2023-12, Vol.51 (6), p.2318
1. Verfasser: Panigrahi, Snigdha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex studies involve many steps. Selecting promising findings based on pilot data is a first step. As more observations are collected, the investigator must decide how to combine the new data with the pilot data to construct valid selective inference. Carving, introduced by Fithian, Sun and Taylor (2014), enables the reuse of pilot data during selective inference and accounts for overoptimism from the selection process. However, currently, carving is only justified for parametric models such as the commonly used Gaussian model. In this paper, we develop the asymptotic theory to substantiate the use of carving beyond Gaussian models. Our results indicate that carving produces valid and tight confidence intervals within a model-free setting, as demonstrated through simulated and real instances.
ISSN:0090-5364
2168-8966
DOI:10.1214/23-AOS2318