Structure-Preserving Recurrent Neural Networks for a Class of Birkhoffian Systems

In this paper, the authors propose a neural network architecture designed specifically for a class of Birkhoffian systems — The Newtonian system. The proposed model utilizes recurrent neural networks (RNNs) and is based on a mathematical framework that ensures the preservation of the Birkhoffian str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2024-04, Vol.37 (2), p.441-462
Hauptverfasser: Xiao, Shanshan, Chen, Mengyi, Zhang, Ruili, Tang, Yifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the authors propose a neural network architecture designed specifically for a class of Birkhoffian systems — The Newtonian system. The proposed model utilizes recurrent neural networks (RNNs) and is based on a mathematical framework that ensures the preservation of the Birkhoffian structure. The authors demonstrate the effectiveness of the proposed model on a variety of problems for which preserving the Birkhoffian structure is important, including the linear damped oscillator, the Van der Pol equation, and a high-dimensional example. Compared with the unstructured baseline models, the Newtonian neural network (NNN) is more data efficient, and exhibits superior generalization ability.
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-024-3252-7