Spectral Neural Operators

In recent works, the authors introduced a neural operator: a special type of neural networks that can approximate maps between infinite-dimensional spaces. Using numerical and analytical techniques, we will highlight the peculiarities of the training and evaluation of these operators. In particular,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2023-12, Vol.108 (Suppl 2), p.S226-S232
Hauptverfasser: Fanaskov, V. S., Oseledets, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent works, the authors introduced a neural operator: a special type of neural networks that can approximate maps between infinite-dimensional spaces. Using numerical and analytical techniques, we will highlight the peculiarities of the training and evaluation of these operators. In particular, we will show that, for a broad class of neural operators based on integral transforms, a systematic bias is inevitable, owning to aliasing errors. To avoid this bias, we introduce spectral neural operators based on explicit discretization of the domain and the codomain. Although discretization deteriorates the approximation properties, numerical experiments show that the accuracy of spectral neural operators is often superior to the one of neural operators defined on infinite-dimensional Banach spaces.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562423701107