Towards Discovery of the Differential Equations
Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly, in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2023-12, Vol.108 (Suppl 2), p.S257-S264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly, in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover equations from data. This paper explores the prerequisites and tools for independent equation discovery without expert input, eliminating the need for equation form assumptions. We focus on addressing the challenge of assessing the adequacy of discovered equations when the correct equation is unknown, with the aim of providing insights for reliable equation discovery without prior knowledge of the equation form. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562423701156 |