DISJUNCTION AND EXISTENCE PROPERTIES IN MODAL ARITHMETIC

We systematically study several versions of the disjunction and the existence properties in modal arithmetic. First, we newly introduce three classes $\mathrm {B}$ , $\Delta (\mathrm {B})$ , and $\Sigma (\mathrm {B})$ of formulas of modal arithmetic and study basic properties of them. Then, we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2024-03, Vol.17 (1), p.178-205
Hauptverfasser: KURAHASHI, TAISHI, OKUDA, MOTOKI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We systematically study several versions of the disjunction and the existence properties in modal arithmetic. First, we newly introduce three classes $\mathrm {B}$ , $\Delta (\mathrm {B})$ , and $\Sigma (\mathrm {B})$ of formulas of modal arithmetic and study basic properties of them. Then, we prove several implications between the properties. In particular, among other things, we prove that for any consistent recursively enumerable extension T of $\mathbf {PA}(\mathbf {K})$ with $T \nvdash \Box \bot $ , the $\Sigma (\mathrm {B})$ -disjunction property, the $\Sigma (\mathrm {B})$ -existence property, and the $\mathrm {B}$ -existence property are pairwise equivalent. Moreover, we introduce the notion of the $\Sigma (\mathrm {B})$ -soundness of theories and prove that for any consistent recursively enumerable extension of $\mathbf {PA}(\mathbf {K4})$ , the modal disjunction property is equivalent to the $\Sigma (\mathrm {B})$ -soundness.
ISSN:1755-0203
1755-0211
DOI:10.1017/S1755020322000363