Deep Active Learning: A Reality Check

We conduct a comprehensive evaluation of state-of-the-art deep active learning methods. Surprisingly, under general settings, no single-model method decisively outperforms entropy-based active learning, and some even fall short of random sampling. We delve into overlooked aspects like starting budge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Gashi, Edrina, Deng, Jiankang, Ismail Elezi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We conduct a comprehensive evaluation of state-of-the-art deep active learning methods. Surprisingly, under general settings, no single-model method decisively outperforms entropy-based active learning, and some even fall short of random sampling. We delve into overlooked aspects like starting budget, budget step, and pretraining's impact, revealing their significance in achieving superior results. Additionally, we extend our evaluation to other tasks, exploring the active learning effectiveness in combination with semi-supervised learning, and object detection. Our experiments provide valuable insights and concrete recommendations for future active learning studies. By uncovering the limitations of current methods and understanding the impact of different experimental settings, we aim to inspire more efficient training of deep learning models in real-world scenarios with limited annotation budgets. This work contributes to advancing active learning's efficacy in deep learning and empowers researchers to make informed decisions when applying active learning to their tasks.
ISSN:2331-8422