A wall-crossing formula for Gromov–Witten invariants under variation of git quotient
We prove a quantum version of a wall-crossing formula of Kalkman (Kalkman in J Reine Angew Math 485:37–52, 1995; Lerman in Math Res Lett 2:247–258, 1995) that compares intersection pairings on geometric invariant theory (git) quotients related by a change in polarization. Each expression in the clas...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-04, Vol.388 (4), p.4135-4199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a quantum version of a wall-crossing formula of Kalkman (Kalkman in J Reine Angew Math 485:37–52, 1995; Lerman in Math Res Lett 2:247–258, 1995) that compares intersection pairings on geometric invariant theory (git) quotients related by a change in polarization. Each expression in the classical formula is quantized in the sense that it is replaced by an integral over moduli spaces of certain stable maps; in particular, the wall-crossing terms are gauged Gromov–Witten invariants with smaller structure group. As an application, we show that the genus zero graph Gromov–Witten potentials of quotients related by wall-crossings of crepant type are equivalent up to a distribution in one of the quantum parameters that is almost everywhere zero. This is a version of the crepant transformation conjecture of Li–Ruan (Invent Math 145(1):151–218, 2001), Bryan–Graber (Algebraic Geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol 80. American Mathematical Society, Providence, pp 23–42, 2009), Coates–Ruan (Quantum cohomology and crepant resolutions: a conjecture,
arXiv:0710.5901
, 2007) etc. in cases where the crepant transformation is obtained by variation of git. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02622-w |