Low Mach number limit of the global solution to the compressible Navier–Stokes system for large data in the critical Besov space
In this paper, we consider the compressible Navier–Stokes system around the constant equilibrium states and prove the existence of a unique global solution for arbitrarily large initial data in the scaling critical Besov space provided that the Mach number is sufficiently small, and the incompressib...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024-04, Vol.388 (4), p.4083-4134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the compressible Navier–Stokes system around the constant equilibrium states and prove the existence of a unique global solution for
arbitrarily large initial data
in the scaling critical Besov space provided that the Mach number is sufficiently small, and the incompressible part of the initial velocity generates the global solution of the incompressible Navier–Stokes equation. Moreover, we consider the low Mach number limit and show that the compressible solution converges to the solution of the incompressible Navier–Stokes equation in some space time norms. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02621-x |