Some Convexity and Monotonicity Results of Trace Functionals
In this paper, we prove the convexity of trace functionals ( A , B , C ) ↦ Tr | B p A C q | s , for parameters ( p , q , s ) that are best possible, where B and C are any n -by- n positive-definite matrices, and A is any n -by- n matrix. We also obtain the monotonicity versions of trace functional...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2024-04, Vol.25 (4), p.2087-2106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the convexity of trace functionals
(
A
,
B
,
C
)
↦
Tr
|
B
p
A
C
q
|
s
,
for parameters (
p
,
q
,
s
) that are best possible, where
B
and
C
are any
n
-by-
n
positive-definite matrices, and
A
is any
n
-by-
n
matrix. We also obtain the monotonicity versions of trace functionals of this type. As applications, we extend some results in Carlen et al. (Linear Algebra Appl 490:174–185, 2016), Hiai and Petz (Publ Res Inst Math Sci 48(3):525-542, 2012) and resolve a conjecture in Al-Rashed and Zegarliński (Infin Dimens Anal Quantum Probab Relat Top 17(4):1450029, 2014) in the matrix setting. Other conjectures in Al-Rashed and Zegarliński (Infin Dimens Anal Quantum Probab Relat Top 17(4):1450029, 2014) will also be discussed. We also show that some related trace functionals are not concave in general. Such concavity results were expected to hold in different problems. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-023-01345-7 |