A collective AI via lifelong learning and sharing at the edge
One vision of a future artificial intelligence (AI) is where many separate units can learn independently over a lifetime and share their knowledge with each other. The synergy between lifelong learning and sharing has the potential to create a society of AI systems, as each individual unit can contr...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2024-03, Vol.6 (3), p.251-264 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One vision of a future artificial intelligence (AI) is where many separate units can learn independently over a lifetime and share their knowledge with each other. The synergy between lifelong learning and sharing has the potential to create a society of AI systems, as each individual unit can contribute to and benefit from the collective knowledge. Essential to this vision are the abilities to learn multiple skills incrementally during a lifetime, to exchange knowledge among units via a common language, to use both local data and communication to learn, and to rely on edge devices to host the necessary decentralized computation and data. The result is a network of agents that can quickly respond to and learn new tasks, that collectively hold more knowledge than a single agent and that can extend current knowledge in more diverse ways than a single agent. Open research questions include when and what knowledge should be shared to maximize both the rate of learning and the long-term learning performance. Here we review recent machine learning advances converging towards creating a collective machine-learned intelligence. We propose that the convergence of such scientific and technological advances will lead to the emergence of new types of scalable, resilient and sustainable AI systems.
An emerging research area in AI is developing multi-agent capabilities with collections of interacting AI systems. Andrea Soltoggio and colleagues develop a vision for combining such approaches with current edge computing technology and lifelong learning advances. The envisioned network of AI agents could quickly learn new tasks in open-ended applications, with individual AI agents independently learning and contributing to and benefiting from collective knowledge. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-024-00800-2 |