Multi-role Consensus through LLMs Discussions for Vulnerability Detection
Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints fr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints from different roles in a typical software development life-cycle, including both developers and testers. To this end, this paper introduces a multi-role approach to employ LLMs to act as different roles simulating a real-life code review process and engaging in discussions toward a consensus on the existence and classification of vulnerabilities in the code. Preliminary evaluation of this approach indicates a 13.48% increase in the precision rate, an 18.25% increase in the recall rate, and a 16.13% increase in the F1 score. |
---|---|
ISSN: | 2331-8422 |