A Highly Frequency-Selective 3D-Printed Dielectric Structure for the Terahertz Range

In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2024-04, Vol.45 (3-4), p.322-336
Hauptverfasser: Kubiczek, Tobias, Kolpatzeck, Kevin, Schultze, Thorsten, Balzer, Jan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a terahertz transmission frequency-selective quasi surface (FSQS) that exhibits strong absorption lines and a periodic band-pass characteristic. The FSQS structure is created by laterally combining Fabry-Pérot resonators with different thicknesses. The transfer function of the FSQS can serve as a broadband reference for testing the signal integrity of the transmission path for broadband terahertz systems. The transfer function achieves a combination of band-pass characteristics and sharp resonances with a theoretical attenuation of over 80 dB and with quality factors of more than 40,000 for a combination of 36 resonators. A single FSQS made up of four resonators is 3D printed by fused deposition modeling using a low-loss cyclic olefin copolymer (COC) filament. Finally, the 3D-printed FSQS is characterized using both frequency-domain and time-domain terahertz spectroscopy. The results show an attenuation of over 42 dB and a quality factor above 100.
ISSN:1866-6892
1866-6906
DOI:10.1007/s10762-024-00973-2