Hilbert's Irreducibility Theorem for Linear Differential Operators

We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Feng, Ruyong, Guo, Zewang, Lu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Feng, Ruyong
Guo, Zewang
Lu, Wei
description We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2972954545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972954545</sourcerecordid><originalsourceid>FETCH-proquest_journals_29729545453</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_EHBwKtSb1trVFwqCS_eS6g3eEpt6kw7-vR38ADnDGc6ZiAiUWifbDGAmYu_bNE1hU0Ceq0jszmQb5LDy8sKMj-FODVkKH1k90TG-pHEsr9ShZnkgY5CxC6StvPXIOjj2CzE12nqMf56L5elY7c9Jz-49oA916wbuxlRDWUCZZyPqv-sLz9Q6GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2972954545</pqid></control><display><type>article</type><title>Hilbert's Irreducibility Theorem for Linear Differential Operators</title><source>Free E- Journals</source><creator>Feng, Ruyong ; Guo, Zewang ; Lu, Wei</creator><creatorcontrib>Feng, Ruyong ; Guo, Zewang ; Lu, Wei</creatorcontrib><description>We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Mathematical analysis ; Operators (mathematics) ; Theorems</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Feng, Ruyong</creatorcontrib><creatorcontrib>Guo, Zewang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Hilbert's Irreducibility Theorem for Linear Differential Operators</title><title>arXiv.org</title><description>We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\).</description><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNirsKwjAUQIMgWLT_EHBwKtSb1trVFwqCS_eS6g3eEpt6kw7-vR38ADnDGc6ZiAiUWifbDGAmYu_bNE1hU0Ceq0jszmQb5LDy8sKMj-FODVkKH1k90TG-pHEsr9ShZnkgY5CxC6StvPXIOjj2CzE12nqMf56L5elY7c9Jz-49oA916wbuxlRDWUCZZyPqv-sLz9Q6GQ</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Feng, Ruyong</creator><creator>Guo, Zewang</creator><creator>Lu, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240320</creationdate><title>Hilbert's Irreducibility Theorem for Linear Differential Operators</title><author>Feng, Ruyong ; Guo, Zewang ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29729545453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Ruyong</creatorcontrib><creatorcontrib>Guo, Zewang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Ruyong</au><au>Guo, Zewang</au><au>Lu, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hilbert's Irreducibility Theorem for Linear Differential Operators</atitle><jtitle>arXiv.org</jtitle><date>2024-03-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2972954545
source Free E- Journals
subjects Differential equations
Mathematical analysis
Operators (mathematics)
Theorems
title Hilbert's Irreducibility Theorem for Linear Differential Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hilbert's%20Irreducibility%20Theorem%20for%20Linear%20Differential%20Operators&rft.jtitle=arXiv.org&rft.au=Feng,%20Ruyong&rft.date=2024-03-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2972954545%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2972954545&rft_id=info:pmid/&rfr_iscdi=true