Hilbert's Irreducibility Theorem for Linear Differential Operators
We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\). |
---|---|
ISSN: | 2331-8422 |