Hilbert's Irreducibility Theorem for Linear Differential Operators

We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Feng, Ruyong, Guo, Zewang, Lu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a differential analogue of Hilbert's irreducibility theorem. Let \(\mathcal{L}\) be a linear differential operator with coefficients in \(C(\mathbb{X})(x)\) that is irreducible over \(\overline{C(\mathbb{X})}(x)\), where \(\mathbb{X}\) is an irreducible affine algebraic variety over an algebraically closed field \(C\) of characteristic zero. We show that the set of \(c\in \mathbb{X}(C)\) such that the specialized operator \(\mathcal{L}^c\) of \(\mathcal{L}\) remains irreducible over \(C(x)\) is Zariski dense in \(\mathbb{X}(C)\).
ISSN:2331-8422