A characterization of the rate of approximation of Kantorovich sampling operators in variable exponent Lebesgue spaces

We establish a direct and a matching two-term converse estimate by a K -functional and a modulus of smoothness for the rate of approximation by generalized Kantorovich sampling operators in variable exponent Lebesgue spaces. They yield the saturation property and class of these operators. We also pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024-04, Vol.118 (2), Article 71
1. Verfasser: Draganov, Borislav R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a direct and a matching two-term converse estimate by a K -functional and a modulus of smoothness for the rate of approximation by generalized Kantorovich sampling operators in variable exponent Lebesgue spaces. They yield the saturation property and class of these operators. We also prove a Voronovskaya-type estimate.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-024-01571-6