Integral Representations for Second-Order Elliptic Systems in the Plane

A fundamental solution matrix for elliptic systems of the second order with constant leading coefficients is constructed. It is used to obtain an integral representation of functions belonging to the Hölder class in a closed domain with a Lyapunov boundary. In the case of an infinite domain, these f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2024, Vol.64 (1), p.118-137
1. Verfasser: Soldatov, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fundamental solution matrix for elliptic systems of the second order with constant leading coefficients is constructed. It is used to obtain an integral representation of functions belonging to the Hölder class in a closed domain with a Lyapunov boundary. In the case of an infinite domain, these functions have power-law asymptotics at infinity. The representation is used to study a mixed-contact boundary value problem for a second-order elliptic system with piecewise constant leading coefficients. The problem is reduced to a system of integral equations that are Fredholm in the domain and singular at its boundary.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542524010147