A Descent Scheme for Thick Elastic Curves with Self-contact and Container Constraints
We present a numerical method to simulate thick elastic curves that accounts for self-contact and container (obstacle) constraints under large deformations. The base model includes bending and torsion effects, as well as inextensibility. A minimizing movements, descent scheme is proposed for computi...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024-05, Vol.99 (2), p.29, Article 29 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a numerical method to simulate thick elastic curves that accounts for self-contact and container (obstacle) constraints under large deformations. The base model includes bending and torsion effects, as well as inextensibility. A minimizing movements, descent scheme is proposed for computing energy minimizers, under the non-convex inextensibility, self-contact, and container constraints (if the container is non-convex). At each pseudo time-step of the scheme, the constraints are linearized, which yields a convex minimization problem (at every time-step) with affine equality and inequality constraints. First order conditions are established for the descent scheme at each time-step, under reasonable assumptions on the admissible set. Furthermore, under a mild time-step restriction, we prove energy decrease for the descent scheme, and show that all constraints are satisfied to second order in the time-step, regardless of the total number of time-steps taken. Moreover, we give a modification of the scheme that regularizes the inequality constraints, and establish convergence of the regularized solution. We then discretize the regularized problem with a finite element method using Hermite and Lagrange elements. Several numerical experiments are shown to illustrate the method, including an example that exhibits
massive
amounts of self-contact for a tightly packed curve inside a sphere. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-024-02487-4 |