Application of Machine Learning Algorithms and Neural Networks for Recognition of Parasitic Parameters by the Output Signal in High-Power Pulsed Electrophysics Devices

The problem of recognition and classification of loads at the output of generating and transmitting distributed parameter lines (DPL) in devices of high-power pulse technology (HPPT) by the amplitude and shape of the output signal using mathematical models based on machine learning methods and neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2023-12, Vol.86 (12), p.2696-2702
Hauptverfasser: Averyanov, G. P., Dmitrieva, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of recognition and classification of loads at the output of generating and transmitting distributed parameter lines (DPL) in devices of high-power pulse technology (HPPT) by the amplitude and shape of the output signal using mathematical models based on machine learning methods and neural networks has been considered. A web application that recognizes parasitic parameters occurring in the devices based on DPL has been developed.
ISSN:1063-7788
1562-692X
DOI:10.1134/S1063778823100046