Discrete stopping times in the lattice of continuous functions

A functional calculus for an order complete vector lattice E was developed by Grobler (Indag Math (NS) 25(2):275–295, 2014) using the Daniell integral. We show that if one represents the universal completion of E as C ∞ ( K ) , where K is an extremally disconnected compact Hausdorff topological spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2024-04, Vol.28 (2), p.25, Article 25
1. Verfasser: Polavarapu, Achintya Raya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A functional calculus for an order complete vector lattice E was developed by Grobler (Indag Math (NS) 25(2):275–295, 2014) using the Daniell integral. We show that if one represents the universal completion of E as C ∞ ( K ) , where K is an extremally disconnected compact Hausdorff topological space, then the Daniell functional calculus for continuous functions is exactly the pointwise composition of functions in C ∞ ( K ) . This representation allows an easy deduction of the various properties of the functional calculus. Afterwards, we study discrete stopping times and stopped processes in C ∞ ( K ) . We obtain a representation that is analogous to what is expected in probability theory.
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-024-01044-5