Discrete stopping times in the lattice of continuous functions
A functional calculus for an order complete vector lattice E was developed by Grobler (Indag Math (NS) 25(2):275–295, 2014) using the Daniell integral. We show that if one represents the universal completion of E as C ∞ ( K ) , where K is an extremally disconnected compact Hausdorff topological spac...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2024-04, Vol.28 (2), p.25, Article 25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A functional calculus for an order complete vector lattice
E
was developed by Grobler (Indag Math (NS) 25(2):275–295, 2014) using the Daniell integral. We show that if one represents the universal completion of
E
as
C
∞
(
K
)
, where
K
is an extremally disconnected compact Hausdorff topological space, then the Daniell functional calculus for continuous functions is exactly the pointwise composition of functions in
C
∞
(
K
)
. This representation allows an easy deduction of the various properties of the functional calculus. Afterwards, we study discrete stopping times and stopped processes in
C
∞
(
K
)
. We obtain a representation that is analogous to what is expected in probability theory. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-024-01044-5 |