Circularly Polarized Electroluminescence of InGaAs/GaAs/CoPt Spin Light Emitting Diodes Placed in a Strong and Weak Magnetic Field
A comparative study of the circular polarization degree dependences on external magnetic field was carried out in spin light-emitting diodes including semiconductor InGaAs/GaAs heterostructure and a magnetic CoPt contact and in control non-magnetic structures with an Au contact. In a weak magnetic f...
Gespeichert in:
Veröffentlicht in: | Technical physics 2023-12, Vol.68 (Suppl 3), p.S418-S423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comparative study of the circular polarization degree dependences on external magnetic field was carried out in spin light-emitting diodes including semiconductor InGaAs/GaAs heterostructure and a magnetic CoPt contact and in control non-magnetic structures with an Au contact. In a weak magnetic field, the magnetic field dependence of electroluminescence circular polarization degree is similar to the magnetic field dependence of magnetization: it represents a hysteresis loop with saturation in a field of ~0.3 T. In a strong magnetic field, an additional linear contribution to the circular polarization degree is detected. This contribution is associated with the Zeeman splitting of energy levels. The magnitude of the linear contribution depends on the position of the quantum well relative to the ferromagnet/semiconductor interface. The obtained dependence is associated with the influence of the magnetic field of the inhomogeneously magnetized CoPt electrode on the spin relaxation time of carriers. |
---|---|
ISSN: | 1063-7842 1090-6525 |
DOI: | 10.1134/S1063784223900607 |