Deep learning based active image steganalysis: a review

Steganalysis plays a vital role in cybersecurity in today’s digital era where exchange of malicious information can be done easily across web pages. Steganography techniques are used to hide data in an object where the existence of hidden information is also obscured. Steganalysis is the process for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of system assurance engineering and management 2024-03, Vol.15 (3), p.786-799
Hauptverfasser: Bedi, Punam, Singhal, Anuradha, Bhasin, Veenu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steganalysis plays a vital role in cybersecurity in today’s digital era where exchange of malicious information can be done easily across web pages. Steganography techniques are used to hide data in an object where the existence of hidden information is also obscured. Steganalysis is the process for detection of steganography within an object and can be categorized as active and passive steganalysis. Passive steganalysis tries to classify a given object as a clean or modified object. Active steganalysis aims to extract more details about hidden contents such as length of embedded message, region of inserted message, key used for embedding, required by cybersecurity experts for comprehensive analysis. Images being a viable source of exchange of information in the era of internet, social media are the most susceptible source for such transmission. Many researchers have worked and developed techniques required to detect and alert about such counterfeit exchanges over the internet. Literature present in passive and active image steganalysis techniques, addresses these issues by detecting and unveiling details of such obscured communication respectively. This paper provides a systematic and comprehensive review of work done on active image steganalysis techniques using deep learning techniques. This review will be helpful to the new researchers to become aware and build a strong foundation of literature present in active image steganalysis using deep learning techniques. The paper also includes various steganographic algorithms, dataset and performance evaluation metrics used in literature. Open research challenges and possible future research directions are also discussed in the paper.
ISSN:0975-6809
0976-4348
DOI:10.1007/s13198-023-02203-9