A priori and a posteriori error estimation for singularly perturbed delay integro-differential equations

This article deals with the numerical analysis of a class of singularly perturbed delay Volterra integro-differential equations exhibiting multiple boundary layers. The discretization of the considered problem is done using an implicit difference scheme for the differential term and a composite nume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2024-04, Vol.95 (4), p.1561-1582
Hauptverfasser: Kumar, Sunil, Kumar, Shashikant, Sumit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article deals with the numerical analysis of a class of singularly perturbed delay Volterra integro-differential equations exhibiting multiple boundary layers. The discretization of the considered problem is done using an implicit difference scheme for the differential term and a composite numerical integration rule for the integral term. The analysis of the discrete scheme consists of two parts. First, we establish an a priori error estimate that is used to prove robust convergence of the discrete scheme on Shishkin and Bakhvalov type meshes. Next, we establish the maximum norm a posteriori error estimate that involves difference derivatives of the approximate solution. The derived a posteriori error estimate gives the computable and guaranteed upper bound on the error. Numerical experiments confirm the theory.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-023-01620-y