A priori and a posteriori error estimation for singularly perturbed delay integro-differential equations
This article deals with the numerical analysis of a class of singularly perturbed delay Volterra integro-differential equations exhibiting multiple boundary layers. The discretization of the considered problem is done using an implicit difference scheme for the differential term and a composite nume...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2024-04, Vol.95 (4), p.1561-1582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article deals with the numerical analysis of a class of singularly perturbed delay Volterra integro-differential equations exhibiting multiple boundary layers. The discretization of the considered problem is done using an implicit difference scheme for the differential term and a composite numerical integration rule for the integral term. The analysis of the discrete scheme consists of two parts. First, we establish an a priori error estimate that is used to prove robust convergence of the discrete scheme on Shishkin and Bakhvalov type meshes. Next, we establish the maximum norm a posteriori error estimate that involves difference derivatives of the approximate solution. The derived a posteriori error estimate gives the computable and guaranteed upper bound on the error. Numerical experiments confirm the theory. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-023-01620-y |