Optimal linear‐Vizing relationships for (total) domination in graphs
A total dominating set in a graph G $G$ is a set of vertices of G $G$ such that every vertex is adjacent to a vertex of the set. The total domination number γ t ( G ) ${\gamma }_{t}(G)$ is the minimum cardinality of a total dominating set in G $G$. In this paper, we study the following open problem...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2024-05, Vol.106 (1), p.149-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A total dominating set in a graph G $G$ is a set of vertices of G $G$ such that every vertex is adjacent to a vertex of the set. The total domination number γ
t
(
G
) ${\gamma }_{t}(G)$ is the minimum cardinality of a total dominating set in G $G$. In this paper, we study the following open problem posed by Yeo. For each Δ
≥
3 ${\rm{\Delta }}\ge 3$, find the smallest value, r
Δ ${r}_{{\rm{\Delta }}}$, such that every connected graph G $G$ of order at least 3, of order n $n$, size m $m$, total domination number γ
t ${\gamma }_{t}$, and bounded maximum degree Δ ${\rm{\Delta }}$, satisfies m
≤
1
2
(
Δ
+
r
Δ
)
(
n
−
γ
t
) $m\le \frac{1}{2}({\rm{\Delta }}+{r}_{{\rm{\Delta }}})(n-{\gamma }_{t})$. Henning showed that r
Δ
≤
Δ ${r}_{{\rm{\Delta }}}\le {\rm{\Delta }}$ for all Δ
≥
3 ${\rm{\Delta }}\ge 3$. Yeo significantly improved this result and showed that 0.1
ln
(
Δ
)
<
r
Δ
≤
2
Δ $0.1\mathrm{ln}({\rm{\Delta }})\lt {r}_{{\rm{\Delta }}}\le 2\sqrt{{\rm{\Delta }}}$ for all Δ
≥
3 ${\rm{\Delta }}\ge 3$, and posed as an open problem to determine “whether r
Δ ${r}_{{\rm{\Delta }}}$ grows proportionally with ln
(
Δ
) $\mathrm{ln}({\rm{\Delta }})$ or Δ $\sqrt{{\rm{\Delta }}}$ or some completely different function.” In this paper, we determine the growth of r
Δ ${r}_{{\rm{\Delta }}}$, and show that r
Δ ${r}_{{\rm{\Delta }}}$ is asymptotically ln
(
Δ
) $\mathrm{ln}({\rm{\Delta }})$ and likewise determine the asymptotics of the analogous constant for standard domination. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.23070 |