Representations from matrix varieties, and filtered RSK
Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the questio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Price, Abigail Stelzer, Ada Alexander, Yong |
description | Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2962923677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962923677</sourcerecordid><originalsourceid>FETCH-proquest_journals_29629236773</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwRcLdSLTewsiuBW3UugF0hpk3qXio-vgw_g9A_fvxAZKLUvjgeAlciZ-7IsQRuoKpUJ0-BEyBiSTT4Glo7iKEebyL_ly5LH5JF30oZOOj8kJOxkc79txNLZgTH_dS22l_PjdC0mis8ZObV9nCl8qYVaQw1KG6P-uz4qnzXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962923677</pqid></control><display><type>article</type><title>Representations from matrix varieties, and filtered RSK</title><source>Free E- Journals</source><creator>Price, Abigail ; Stelzer, Ada ; Alexander, Yong</creator><creatorcontrib>Price, Abigail ; Stelzer, Ada ; Alexander, Yong</creatorcontrib><description>Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bicrystals ; Combinatorial analysis ; Matrix algebra ; Representations ; Toruses</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Price, Abigail</creatorcontrib><creatorcontrib>Stelzer, Ada</creatorcontrib><creatorcontrib>Alexander, Yong</creatorcontrib><title>Representations from matrix varieties, and filtered RSK</title><title>arXiv.org</title><description>Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence.</description><subject>Bicrystals</subject><subject>Combinatorial analysis</subject><subject>Matrix algebra</subject><subject>Representations</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwRcLdSLTewsiuBW3UugF0hpk3qXio-vgw_g9A_fvxAZKLUvjgeAlciZ-7IsQRuoKpUJ0-BEyBiSTT4Glo7iKEebyL_ly5LH5JF30oZOOj8kJOxkc79txNLZgTH_dS22l_PjdC0mis8ZObV9nCl8qYVaQw1KG6P-uz4qnzXf</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Price, Abigail</creator><creator>Stelzer, Ada</creator><creator>Alexander, Yong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240315</creationdate><title>Representations from matrix varieties, and filtered RSK</title><author>Price, Abigail ; Stelzer, Ada ; Alexander, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29629236773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bicrystals</topic><topic>Combinatorial analysis</topic><topic>Matrix algebra</topic><topic>Representations</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Price, Abigail</creatorcontrib><creatorcontrib>Stelzer, Ada</creatorcontrib><creatorcontrib>Alexander, Yong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Abigail</au><au>Stelzer, Ada</au><au>Alexander, Yong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Representations from matrix varieties, and filtered RSK</atitle><jtitle>arXiv.org</jtitle><date>2024-03-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2962923677 |
source | Free E- Journals |
subjects | Bicrystals Combinatorial analysis Matrix algebra Representations Toruses |
title | Representations from matrix varieties, and filtered RSK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Representations%20from%20matrix%20varieties,%20and%20filtered%20RSK&rft.jtitle=arXiv.org&rft.au=Price,%20Abigail&rft.date=2024-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2962923677%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962923677&rft_id=info:pmid/&rfr_iscdi=true |