Representations from matrix varieties, and filtered RSK

Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the questio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Price, Abigail, Stelzer, Ada, Alexander, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence.
ISSN:2331-8422