Representations from matrix varieties, and filtered RSK
Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the questio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Matrix Schubert varieties (Fulton '92) carry natural actions of Levi groups. Their coordinate rings are thereby Levi-representations; what is a combinatorial counting rule for the multiplicities of their irreducibles? When the Levi group is a torus, (Knutson-Miller '04) answers the question. We present a general solution, a common refinement of the multigraded Hilbert series, the Cauchy identity, and the Littlewood-Richardson rule. Our result applies to any ``bicrystalline'' algebraic variety; we define these using the operators of (Kashiwara '95) and of (Danilov-Koshevoi '05, van Leeuwen '06). The proof introduces a ``filtered'' generalization of the Robinson-Schensted-Knuth correspondence. |
---|---|
ISSN: | 2331-8422 |