Minimization of the norm of a nonlinear mapping

In this paper, we minimize the map F ψ : U → R + defined by F ψ ( X ) = | | ψ ( X ) | | where ψ : U → B ( H ) is a map defined by ψ ( X ) = | | S + ϕ ( X ) | | , with ϕ : B ( H ) → B ( H ) a linear or a nonlinear map, S ∈ B ( H ) , and U = { X ∈ B ( H ) : ϕ ( X ) ∈ B ( H ) } , using convex and diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2024-07, Vol.30 (2), Article 31
1. Verfasser: Mecheri, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we minimize the map F ψ : U → R + defined by F ψ ( X ) = | | ψ ( X ) | | where ψ : U → B ( H ) is a map defined by ψ ( X ) = | | S + ϕ ( X ) | | , with ϕ : B ( H ) → B ( H ) a linear or a nonlinear map, S ∈ B ( H ) , and U = { X ∈ B ( H ) : ϕ ( X ) ∈ B ( H ) } , using convex and differential analysis (Gâteaux derivative) as well as input from operator theory. The mappings considered generalize the so-called elementary operators and in particular the generalized derivations, which are of great interest by themselves. The main results obtained characterize global minima in terms of (Banach space) orthogonality, and constitute an interesting combination of infinite-dimensional differential analysis, operator theory and duality. It is interesting to point out that our results are the first (at least in our knowledge) in the (linear or nonlinear) case.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-024-00598-4