Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups

Let P be the set of all prime numbers. A subgroup H of a finite group G is said to be P - subnormal in G if there exists a chain of subgroups H = H 0 ⊆ H 1 ⊆ ⋯ ⊆ H n - 1 ⊆ H n = G such that either H i - 1 is normal in H i or | H i : H i - 1 | is a prime number for every i = 1 , 2 , … , n . A subgrou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2024-03, Vol.21 (2)
Hauptverfasser: Ballester-Bolinches, A., Kamornikov, S. F., Pérez-Calabuig, V., Yi, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P be the set of all prime numbers. A subgroup H of a finite group G is said to be P - subnormal in G if there exists a chain of subgroups H = H 0 ⊆ H 1 ⊆ ⋯ ⊆ H n - 1 ⊆ H n = G such that either H i - 1 is normal in H i or | H i : H i - 1 | is a prime number for every i = 1 , 2 , … , n . A subgroup H of G is called a TI - subgroup if every pair of distinct conjugates of H has trivial intersection. The aim of this paper is to give a complete description of all finite groups in which every non- P -subnormal subgroup is a TI -subgroup.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-024-02612-5