On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness
Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2024-06, Vol.34 (3), Article 43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of nonlinear science |
container_volume | 34 |
creator | Peter, Malte A. Woukeng, Jean Louis |
description | Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously. |
doi_str_mv | 10.1007/s00332-024-10018-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2957741303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957741303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4df78b4a947d2c07594a071ffa84583f7821499d0e79113380a90f6fe7b5233</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_mUzcSatWKFao4EYI6UzGTkmTmswo3fkOvqFPYuoI7lwd7r3nnAsfAKcEnxOMxUXEmDGKMOUozaRA-R4YEJ5WhOdiHwywZAUqpOCH4CjGVfKIjNEBeJ452C4NHPtuYbfw3jtkfaktnBhr0Hyp378-Pkd66ZJMGmsbHSo438bWrC_h2ITmTbeNd1C7CtIxfDLWogcfTeVMjMfgoNY2mpNfHYL5zfXjaIKms9u70dUUlYzwFvGqFsWCa8lFRUssMsk1FqSudcGzgqUjJVzKChshCWGswFriOq-NWGSUsSE461s3wb92JrZq5bvg0kNFZSYEJwzvXLR3lcHHGEytNqFZ67BVBKsdQ9UzVImh-mGo8hRifSgms3sx4a_6n9Q3SJJ0EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957741303</pqid></control><display><type>article</type><title>On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness</title><source>SpringerLink Journals</source><creator>Peter, Malte A. ; Woukeng, Jean Louis</creator><creatorcontrib>Peter, Malte A. ; Woukeng, Jean Louis</creatorcontrib><description>Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-024-10018-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Homogenization ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Theoretical ; Two phase flow ; Well posed problems</subject><ispartof>Journal of nonlinear science, 2024-06, Vol.34 (3), Article 43</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4df78b4a947d2c07594a071ffa84583f7821499d0e79113380a90f6fe7b5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-024-10018-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-024-10018-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Woukeng, Jean Louis</creatorcontrib><title>On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Homogenization</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theoretical</subject><subject>Two phase flow</subject><subject>Well posed problems</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_mUzcSatWKFao4EYI6UzGTkmTmswo3fkOvqFPYuoI7lwd7r3nnAsfAKcEnxOMxUXEmDGKMOUozaRA-R4YEJ5WhOdiHwywZAUqpOCH4CjGVfKIjNEBeJ452C4NHPtuYbfw3jtkfaktnBhr0Hyp378-Pkd66ZJMGmsbHSo438bWrC_h2ITmTbeNd1C7CtIxfDLWogcfTeVMjMfgoNY2mpNfHYL5zfXjaIKms9u70dUUlYzwFvGqFsWCa8lFRUssMsk1FqSudcGzgqUjJVzKChshCWGswFriOq-NWGSUsSE461s3wb92JrZq5bvg0kNFZSYEJwzvXLR3lcHHGEytNqFZ67BVBKsdQ9UzVImh-mGo8hRifSgms3sx4a_6n9Q3SJJ0EQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Peter, Malte A.</creator><creator>Woukeng, Jean Louis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness</title><author>Peter, Malte A. ; Woukeng, Jean Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4df78b4a947d2c07594a071ffa84583f7821499d0e79113380a90f6fe7b5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Homogenization</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theoretical</topic><topic>Two phase flow</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Woukeng, Jean Louis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, Malte A.</au><au>Woukeng, Jean Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><artnum>43</artnum><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-024-10018-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2024-06, Vol.34 (3), Article 43 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_proquest_journals_2957741303 |
source | SpringerLink Journals |
subjects | Analysis Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Homogenization Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Theoretical Two phase flow Well posed problems |
title | On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Doubly%20Non-local%20Hele-Shaw%E2%80%93Cahn%E2%80%93Hilliard%20System:%20Derivation%20and%202D%20Well-Posedness&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Peter,%20Malte%20A.&rft.date=2024-06-01&rft.volume=34&rft.issue=3&rft.artnum=43&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-024-10018-6&rft_dat=%3Cproquest_cross%3E2957741303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957741303&rft_id=info:pmid/&rfr_iscdi=true |