On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness

Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2024-06, Vol.34 (3), Article 43
Hauptverfasser: Peter, Malte A., Woukeng, Jean Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-024-10018-6