On the separation property and the global attractor for the nonlocal Cahn-Hilliard equation in three dimensions

We consider the nonlocal Cahn-Hilliard equation with constant mobility and singular potential in three dimensional bounded and smooth domains. This model describes phase separation in binary fluid mixtures. Given any global solution (whose existence and uniqueness are already known), we prove the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2024-06, Vol.24 (2), Article 21
1. Verfasser: Giorgini, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the nonlocal Cahn-Hilliard equation with constant mobility and singular potential in three dimensional bounded and smooth domains. This model describes phase separation in binary fluid mixtures. Given any global solution (whose existence and uniqueness are already known), we prove the so-called instantaneous and uniform separation property: any global solution with initial finite energy is globally confined (in the L ∞ metric) in the interval [ - 1 + δ , 1 - δ ] on the time interval [ τ , ∞ ) for any τ > 0 , where δ only depends on the norms of the initial datum, τ and the parameters of the system. We then exploit such result to improve the regularity of the global attractor for the dynamical system associated to the problem.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-024-00953-y