Flexibility of Steklov eigenvalues via boundary homogenisation
Recently, D. Bucur and M. Nahon used boundary homogenisation to show the remarkable flexibility of Steklov eigenvalues of planar domains. In the present paper we extend their result to higher dimensions and to arbitrary manifolds with boundary, even though in those cases the boundary does not genera...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2024-04, Vol.48 (1), p.175-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, D. Bucur and M. Nahon used boundary homogenisation to show the remarkable flexibility of Steklov eigenvalues of planar domains. In the present paper we extend their result to higher dimensions and to arbitrary manifolds with boundary, even though in those cases the boundary does not generally exhibit any periodic structure. Our arguments use a framework of variational eigenvalues and provide a different proof of the original results. Furthermore, we present an application of this flexibility to the optimisation of Steklov eigenvalues under perimeter constraint. It is proved that the best upper bound for normalised Steklov eigenvalues of surfaces of genus zero and any fixed number of boundary components can always be saturated by planar domains. This is the case even though any actual maximisers (except for simply connected surfaces) are always far from being planar themselves. In particular, it yields sharp upper bound for the first Steklov eigenvalue of doubly connected planar domains. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-022-00207-8 |