Informed Trading Intensity

ABSTRACT We train a machine learning method on a class of informed trades to develop a new measure of informed trading, informed trading intensity (ITI). ITI increases before earnings, mergers and acquisitions, and news announcements, and has implications for return reversal and asset pricing. ITI i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of finance (New York) 2024-04, Vol.79 (2), p.903-948
Hauptverfasser: BOGOUSSLAVSKY, VINCENT, FOS, VYACHESLAV, MURAVYEV, DMITRIY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We train a machine learning method on a class of informed trades to develop a new measure of informed trading, informed trading intensity (ITI). ITI increases before earnings, mergers and acquisitions, and news announcements, and has implications for return reversal and asset pricing. ITI is effective because it captures nonlinearities and interactions between informed trading, volume, and volatility. This data‐driven approach can shed light on the economics of informed trading, including impatient informed trading, commonality in informed trading, and models of informed trading. Overall, learning from informed trading data can generate an effective informed trading measure.
ISSN:0022-1082
1540-6261
DOI:10.1111/jofi.13320