On Krull-Schmidt decompositions of unit groups of number fields

We prove that the Krull-Schmidt decomposition of the Galois module of the \(p\)-adic completion of algebraic units is controlled by the primes that are ramified in the Galois extension and the \(S\)-ideal class group. We also compute explicit upper bounds for the number of possible Galois module str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Kumon, Asuka, Lim, Donghyeok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Krull-Schmidt decomposition of the Galois module of the \(p\)-adic completion of algebraic units is controlled by the primes that are ramified in the Galois extension and the \(S\)-ideal class group. We also compute explicit upper bounds for the number of possible Galois module structures of algebraic units when the Galois group is cyclic of order \(p^{2}\) or \(p^{3}\).
ISSN:2331-8422