On Krull-Schmidt decompositions of unit groups of number fields
We prove that the Krull-Schmidt decomposition of the Galois module of the \(p\)-adic completion of algebraic units is controlled by the primes that are ramified in the Galois extension and the \(S\)-ideal class group. We also compute explicit upper bounds for the number of possible Galois module str...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the Krull-Schmidt decomposition of the Galois module of the \(p\)-adic completion of algebraic units is controlled by the primes that are ramified in the Galois extension and the \(S\)-ideal class group. We also compute explicit upper bounds for the number of possible Galois module structures of algebraic units when the Galois group is cyclic of order \(p^{2}\) or \(p^{3}\). |
---|---|
ISSN: | 2331-8422 |