CoBra: Complementary Branch Fusing Class and Semantic Knowledge for Robust Weakly Supervised Semantic Segmentation

Leveraging semantically precise pseudo masks derived from image-level class knowledge for segmentation, namely image-level Weakly Supervised Semantic Segmentation (WSSS), still remains challenging. While Class Activation Maps (CAMs) using CNNs have steadily been contributing to the success of WSSS,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Han, Woojung, Kang, Seil, Choo, Kyobin, Hwang, Seong Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leveraging semantically precise pseudo masks derived from image-level class knowledge for segmentation, namely image-level Weakly Supervised Semantic Segmentation (WSSS), still remains challenging. While Class Activation Maps (CAMs) using CNNs have steadily been contributing to the success of WSSS, the resulting activation maps often narrowly focus on class-specific parts (e.g., only face of human). On the other hand, recent works based on vision transformers (ViT) have shown promising results based on their self-attention mechanism to capture the semantic parts but fail in capturing complete class-specific details (e.g., entire body parts of human but also with a dog nearby). In this work, we propose Complementary Branch (CoBra), a novel dual branch framework consisting of two distinct architectures which provide valuable complementary knowledge of class (from CNN) and semantic (from ViT) to each branch. In particular, we learn Class-Aware Projection (CAP) for the CNN branch and Semantic-Aware Projection (SAP) for the ViT branch to explicitly fuse their complementary knowledge and facilitate a new type of extra patch-level supervision. Our model, through CoBra, fuses CNN and ViT's complementary outputs to create robust pseudo masks that integrate both class and semantic information effectively. Extensive experiments qualitatively and quantitatively investigate how CNN and ViT complement each other on the PASCAL VOC 2012 dataset, showing a state-of-the-art WSSS result. This includes not only the masks generated by our model, but also the segmentation results derived from utilizing these masks as pseudo labels.
ISSN:2331-8422