Architectural Implications of Neural Network Inference for High Data-Rate, Low-Latency Scientific Applications

With more scientific fields relying on neural networks (NNs) to process data incoming at extreme throughputs and latencies, it is crucial to develop NNs with all their parameters stored on-chip. In many of these applications, there is not enough time to go off-chip and retrieve weights. Even more so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Weng, Olivia, Redding, Alexander, Tran, Nhan, Duarte, Javier Mauricio, Kastner, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With more scientific fields relying on neural networks (NNs) to process data incoming at extreme throughputs and latencies, it is crucial to develop NNs with all their parameters stored on-chip. In many of these applications, there is not enough time to go off-chip and retrieve weights. Even more so, off-chip memory such as DRAM does not have the bandwidth required to process these NNs as fast as the data is being produced (e.g., every 25 ns). As such, these extreme latency and bandwidth requirements have architectural implications for the hardware intended to run these NNs: 1) all NN parameters must fit on-chip, and 2) codesigning custom/reconfigurable logic is often required to meet these latency and bandwidth constraints. In our work, we show that many scientific NN applications must run fully on chip, in the extreme case requiring a custom chip to meet such stringent constraints.
ISSN:2331-8422