On the Number of Limit Cycles Bifurcating from the Linear Center with a Cubic Switching Curve
This paper studies the bifurcations of limit cycles from the system x ˙ = y , y ˙ = - x with the switching curve y = x 3 / 3 - x under the perturbations of arbitrary polynomials of x and y with degree n . We obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating fro...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2024-07, Vol.23 (3), Article 134 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the bifurcations of limit cycles from the system
x
˙
=
y
,
y
˙
=
-
x
with the switching curve
y
=
x
3
/
3
-
x
under the perturbations of arbitrary polynomials of
x
and
y
with degree
n
. We obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating from
h
∈
(
0
,
3
/
2
)
if the first order Melnikov function is not identically 0. When the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first order Melnikov function. We also give an example to illustrate our result. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-024-00986-1 |