On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

We consider the three-particle Schrödinger operator , , associated with a system of three particles (of which two are bosons with mass and one is arbitrary with mass ) coupled by pairwise contact potentials and on the three-dimensional lattice . We prove that there exist critical mass ratio values a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2023-12, Vol.114 (5-6), p.645-658
Hauptverfasser: Abdullaev, J. I., Boymurodov, J. K., Khalkhuzhaev, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the three-particle Schrödinger operator , , associated with a system of three particles (of which two are bosons with mass and one is arbitrary with mass ) coupled by pairwise contact potentials and on the three-dimensional lattice . We prove that there exist critical mass ratio values and such that for sufficiently large and fixed the operator , , has at least one eigenvalue lying to the left of the essential spectrum for , at least two such eigenvalues for , and at least four such eigenvalues for .
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434623110019