An optimization method for pruning rates of each layer in CNN based on the GA-SMSM

Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Memetic computing 2024-03, Vol.16 (1), p.45-54
Hauptverfasser: Dong, Xiaoyu, Yan, Pinshuai, Wang, Mengfei, Li, Binqi, Song, Yuantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 45
container_title Memetic computing
container_volume 16
creator Dong, Xiaoyu
Yan, Pinshuai
Wang, Mengfei
Li, Binqi
Song, Yuantao
description Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning methods adopt equal pruning rates across all layers. Different from previous methods, this paper focuses on the optimal combination of each layer’s pruning rates within a given pruning rate of the whole model. Genetic algorithm is used to determine the pruning rate for each layer. It’s worth noting that while the pruning rate for individual layers may vary, the average pruning rate across all layers does not exceed the given pruning rate. Experimental validation is conducted on CIFAR10 and ImageNet ILSVRC2012 datasets using VGGNet and ResNet architectures. The results show that the accuracy loss and the FLOPs of the pruned model using our method are superior to those pruned using previous methods.
doi_str_mv 10.1007/s12293-023-00402-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956785825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956785825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-159fc2085822efb698ac95be7a732c6643e8c54c8ff96ac7c22c075dfc8eef3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwFPA82p2drNJjqVoFdoK1ntI00m7pd2syfZQn97UFb05ECaH__sHPkJuc3afMyYeYg6gioxBeqxkkMEFGeSy4pkCBZe_f1lek1GMO5amACHLfEDexg31bVcf6k_T1b6hB-y2fk2dD7QNx6ZuNjSYDiP1jqKxW7o3Jwy0buhksaArE3FNE9ZtkU7H2XK-nN-QK2f2EUc_e0iWT4_vk-ds9jp9mYxnmQXBuiznyllgkksAdKtKSWMVX6EwogBbVWWB0vLSSudUZaywAJYJvnZWIrpiSO761jb4jyPGTu_8MTTpoAbFK3Hu5SkFfcoGH2NAp9tQH0w46Zzpszzdy9NJnv6WpyFBRQ_FFG42GP6q_6G-AJ99cGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956785825</pqid></control><display><type>article</type><title>An optimization method for pruning rates of each layer in CNN based on the GA-SMSM</title><source>SpringerLink Journals</source><creator>Dong, Xiaoyu ; Yan, Pinshuai ; Wang, Mengfei ; Li, Binqi ; Song, Yuantao</creator><creatorcontrib>Dong, Xiaoyu ; Yan, Pinshuai ; Wang, Mengfei ; Li, Binqi ; Song, Yuantao</creatorcontrib><description>Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning methods adopt equal pruning rates across all layers. Different from previous methods, this paper focuses on the optimal combination of each layer’s pruning rates within a given pruning rate of the whole model. Genetic algorithm is used to determine the pruning rate for each layer. It’s worth noting that while the pruning rate for individual layers may vary, the average pruning rate across all layers does not exceed the given pruning rate. Experimental validation is conducted on CIFAR10 and ImageNet ILSVRC2012 datasets using VGGNet and ResNet architectures. The results show that the accuracy loss and the FLOPs of the pruned model using our method are superior to those pruned using previous methods.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-023-00402-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Complex Systems ; Control ; Engineering ; Genetic algorithms ; Mathematical and Computational Engineering ; Mathematical models ; Mechatronics ; Parameters ; Regular Research paper ; Robotics</subject><ispartof>Memetic computing, 2024-03, Vol.16 (1), p.45-54</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-159fc2085822efb698ac95be7a732c6643e8c54c8ff96ac7c22c075dfc8eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12293-023-00402-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12293-023-00402-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dong, Xiaoyu</creatorcontrib><creatorcontrib>Yan, Pinshuai</creatorcontrib><creatorcontrib>Wang, Mengfei</creatorcontrib><creatorcontrib>Li, Binqi</creatorcontrib><creatorcontrib>Song, Yuantao</creatorcontrib><title>An optimization method for pruning rates of each layer in CNN based on the GA-SMSM</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning methods adopt equal pruning rates across all layers. Different from previous methods, this paper focuses on the optimal combination of each layer’s pruning rates within a given pruning rate of the whole model. Genetic algorithm is used to determine the pruning rate for each layer. It’s worth noting that while the pruning rate for individual layers may vary, the average pruning rate across all layers does not exceed the given pruning rate. Experimental validation is conducted on CIFAR10 and ImageNet ILSVRC2012 datasets using VGGNet and ResNet architectures. The results show that the accuracy loss and the FLOPs of the pruned model using our method are superior to those pruned using previous methods.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Parameters</subject><subject>Regular Research paper</subject><subject>Robotics</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGpfwFPA82p2drNJjqVoFdoK1ntI00m7pd2syfZQn97UFb05ECaH__sHPkJuc3afMyYeYg6gioxBeqxkkMEFGeSy4pkCBZe_f1lek1GMO5amACHLfEDexg31bVcf6k_T1b6hB-y2fk2dD7QNx6ZuNjSYDiP1jqKxW7o3Jwy0buhksaArE3FNE9ZtkU7H2XK-nN-QK2f2EUc_e0iWT4_vk-ds9jp9mYxnmQXBuiznyllgkksAdKtKSWMVX6EwogBbVWWB0vLSSudUZaywAJYJvnZWIrpiSO761jb4jyPGTu_8MTTpoAbFK3Hu5SkFfcoGH2NAp9tQH0w46Zzpszzdy9NJnv6WpyFBRQ_FFG42GP6q_6G-AJ99cGE</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dong, Xiaoyu</creator><creator>Yan, Pinshuai</creator><creator>Wang, Mengfei</creator><creator>Li, Binqi</creator><creator>Song, Yuantao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>An optimization method for pruning rates of each layer in CNN based on the GA-SMSM</title><author>Dong, Xiaoyu ; Yan, Pinshuai ; Wang, Mengfei ; Li, Binqi ; Song, Yuantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-159fc2085822efb698ac95be7a732c6643e8c54c8ff96ac7c22c075dfc8eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Parameters</topic><topic>Regular Research paper</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xiaoyu</creatorcontrib><creatorcontrib>Yan, Pinshuai</creatorcontrib><creatorcontrib>Wang, Mengfei</creatorcontrib><creatorcontrib>Li, Binqi</creatorcontrib><creatorcontrib>Song, Yuantao</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xiaoyu</au><au>Yan, Pinshuai</au><au>Wang, Mengfei</au><au>Li, Binqi</au><au>Song, Yuantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimization method for pruning rates of each layer in CNN based on the GA-SMSM</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>45</spage><epage>54</epage><pages>45-54</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning methods adopt equal pruning rates across all layers. Different from previous methods, this paper focuses on the optimal combination of each layer’s pruning rates within a given pruning rate of the whole model. Genetic algorithm is used to determine the pruning rate for each layer. It’s worth noting that while the pruning rate for individual layers may vary, the average pruning rate across all layers does not exceed the given pruning rate. Experimental validation is conducted on CIFAR10 and ImageNet ILSVRC2012 datasets using VGGNet and ResNet architectures. The results show that the accuracy loss and the FLOPs of the pruned model using our method are superior to those pruned using previous methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-023-00402-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-9284
ispartof Memetic computing, 2024-03, Vol.16 (1), p.45-54
issn 1865-9284
1865-9292
language eng
recordid cdi_proquest_journals_2956785825
source SpringerLink Journals
subjects Applications of Mathematics
Artificial Intelligence
Bioinformatics
Complex Systems
Control
Engineering
Genetic algorithms
Mathematical and Computational Engineering
Mathematical models
Mechatronics
Parameters
Regular Research paper
Robotics
title An optimization method for pruning rates of each layer in CNN based on the GA-SMSM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimization%20method%20for%20pruning%20rates%20of%20each%20layer%20in%20CNN%20based%20on%20the%20GA-SMSM&rft.jtitle=Memetic%20computing&rft.au=Dong,%20Xiaoyu&rft.date=2024-03-01&rft.volume=16&rft.issue=1&rft.spage=45&rft.epage=54&rft.pages=45-54&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-023-00402-2&rft_dat=%3Cproquest_cross%3E2956785825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956785825&rft_id=info:pmid/&rfr_iscdi=true