An optimization method for pruning rates of each layer in CNN based on the GA-SMSM

Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Memetic computing 2024-03, Vol.16 (1), p.45-54
Hauptverfasser: Dong, Xiaoyu, Yan, Pinshuai, Wang, Mengfei, Li, Binqi, Song, Yuantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parameter pruning is one of the primary methods for compressing CNN models, aiming to reduce redundant parameters, the complexity of time and space, and the calculation resources of the network, all while ensuring minimal loss in the network’s performance. Currently, most existing parameter pruning methods adopt equal pruning rates across all layers. Different from previous methods, this paper focuses on the optimal combination of each layer’s pruning rates within a given pruning rate of the whole model. Genetic algorithm is used to determine the pruning rate for each layer. It’s worth noting that while the pruning rate for individual layers may vary, the average pruning rate across all layers does not exceed the given pruning rate. Experimental validation is conducted on CIFAR10 and ImageNet ILSVRC2012 datasets using VGGNet and ResNet architectures. The results show that the accuracy loss and the FLOPs of the pruned model using our method are superior to those pruned using previous methods.
ISSN:1865-9284
1865-9292
DOI:10.1007/s12293-023-00402-2