Enhancing Communication Efficiency of Semantic Transmission via Joint Processing Technique

This work presents a novel semantic transmission framework in wireless networks, leveraging the joint processing technique. Our framework enables multiple cooperating base stations to efficiently transmit semantic information to multiple users simultaneously. To enhance the semantic communication ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-03, Vol.28 (3), p.657-661
Hauptverfasser: Pu, Xumin, Lei, Tiantian, Wen, Wanli, Chen, Qianbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a novel semantic transmission framework in wireless networks, leveraging the joint processing technique. Our framework enables multiple cooperating base stations to efficiently transmit semantic information to multiple users simultaneously. To enhance the semantic communication efficiency of the transmission framework, we formulate an optimization problem with the objective of maximizing the semantic spectral efficiency of the framework and propose a low-complexity dynamic semantic mapping and resource allocation algorithm. This algorithm, based on deep reinforcement learning and alternative optimization, achieves near-optimal performance while reducing computational complexity. Simulation results validate the effectiveness of the proposed algorithm, bridging the research gap and facilitating the practical implementation of semantic communication systems.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2023.3349137