Structured interpolation for multivariate transfer functions of quadratic-bilinear systems
High-dimensional/high-fidelity nonlinear dynamical systems appear naturally when the goal is to accurately model real-world phenomena. Many physical properties are thereby encoded in the internal differential structure of these resulting large-scale nonlinear systems. The high dimensionality of the...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2024-04, Vol.50 (2), Article 18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-dimensional/high-fidelity nonlinear dynamical systems appear naturally when the goal is to accurately model real-world phenomena. Many physical properties are thereby encoded in the internal differential structure of these resulting large-scale nonlinear systems. The high dimensionality of the dynamics causes computational bottlenecks, especially when these large-scale systems need to be simulated for a variety of situations such as different forcing terms. This motivates model reduction where the goal is to replace the full-order dynamics with accurate reduced-order surrogates. Interpolation-based model reduction has been proven to be an effective tool for the construction of cheap-to-evaluate surrogate models that preserve the internal structure in the case of weak nonlinearities. In this paper, we consider the construction of multivariate interpolants in frequency domain for structured quadratic-bilinear systems. We propose definitions for structured variants of the symmetric subsystem and generalized transfer functions of quadratic-bilinear systems and provide conditions for structure-preserving interpolation by projection. The theoretical results are illustrated using two numerical examples including the simulation of molecular dynamics in crystal structures. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-024-10109-8 |