Density peaks clustering algorithm with connected local density and punished relative distance

Density peaks clustering (DPC) algorithm has been widely applied in many fields due to its innovation and efficiency. However, the original DPC algorithm and many of its variants choose Euclidean distance as local density and relative distance estimations, which affects the clustering performance on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-03, Vol.80 (5), p.6140-6168
Hauptverfasser: Xiong, Jingwen, Zang, Wenke, Zhao, Yuzhen, Liu, Xiyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Density peaks clustering (DPC) algorithm has been widely applied in many fields due to its innovation and efficiency. However, the original DPC algorithm and many of its variants choose Euclidean distance as local density and relative distance estimations, which affects the clustering performance on some specific shaped datasets, such as manifold datasets. To address the above-mentioned issue, we propose a density peak clustering algorithm with connected local density and punished relative distance (DPC–CLD–PRD). Specifically, the proposed approach computes the distance matrix between data pairs using the flexible connectivity distance metric. Then, it calculates the connected local density of each data point via combining the flexible connectivity distance measure and k-nearest neighbor method. Finally, the punished relative distance of each data point is obtained by introducing a connectivity estimation strategy into the distance optimization process. Experiments on synthetic, real-world, and image datasets have shown the effectiveness of the algorithm in this paper.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-023-05688-0