Small Data Solutions for the Vlasov–Poisson System with a Repulsive Potential

In this paper, we study small data solutions for the Vlasov–Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov–Poisson system with the repu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-03, Vol.405 (3), Article 80
Hauptverfasser: Velozo Ruiz, Anibal, Velozo Ruiz, Renato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study small data solutions for the Vlasov–Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov–Poisson system with the repulsive potential - | x | 2 2 in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-024-04970-3