Suppressing Carbon Incorporation in Metal–Organic Chemical Vapor Deposition GaN Using High‐Offcut‐Angled Substrates

Carbon (C) is a common impurity that acts as a compensator within GaN grown via metal–organic chemical vapor deposition (MOCVD). Reducing C in GaN will help reduce the compensation level and provide a route to achieve GaN with reliably low effective doping for high‐power device applications. GaN gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2024-03, Vol.18 (3), p.n/a
Hauptverfasser: Thirupakuzi Vangipuram, Vijay Gopal, Zhang, Kaitian, Zhao, Hongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon (C) is a common impurity that acts as a compensator within GaN grown via metal–organic chemical vapor deposition (MOCVD). Reducing C in GaN will help reduce the compensation level and provide a route to achieve GaN with reliably low effective doping for high‐power device applications. GaN grown with fast growth rates on bulk GaN with various offcut angles via conventional‐MOCVD (C‐MOCVD) and laser‐assisted MOCVD (LA‐MOCVD) is compared and analyzed. C‐incorporation effects are compared through quantitative secondary‐ion mass spectroscopy analysis in GaN grown on GaN substrate with offcut angles of 4° and 0.3° toward m‐plane over a wide range of growth rates by C‐MOCVD and LA‐MOCVD. For both growth techniques investigated, a significant reduction in C‐incorporation is observed when a high‐offcut‐angle (4°) substrate is used as compared to a lower‐offcut‐angle (0.3°) substrate. With C‐MOCVD, at the fastest growth condition investigated (17.26 μm h−1 at 0.3°‐offcut, 15.25 μm h−1 at 4°‐offcut), a reduction in [C] by 21.2X is observed with an increase in the offcut angle from 0.3° to 4°. A 82.6X reduction in [C] is observed with the similar fast growth condition via LA‐MOCVD on GaN with 4° offcut angle (9.78 μm h−1) as compared to C‐MOCVD at 0.3° offcut angle (17.26 μm h−1). Significant reduction in carbon concentration ([C]) within GaN is realized using GaN substrate with deep offcut angles. At the fastest growth condition investigated (>15 μm h−1), reduction in [C] by 21.2X is achieved using an offcut angle of 4°, and 82.6X reduction is achieved when laser‐assisted metal–organic chemical vapor deposition and a 4° offcut angle substrate are used.
ISSN:1862-6254
1862-6270
DOI:10.1002/pssr.202300318