Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces

We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2024-03, Vol.297 (3), p.878-894
Hauptverfasser: Bourdaud, Gérard, Moussai, Madani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 894
container_issue 3
container_start_page 878
container_title Mathematische Nachrichten
container_volume 297
creator Bourdaud, Gérard
Moussai, Madani
description We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0
doi_str_mv 10.1002/mana.202300117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956059983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956059983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTjk7cWyP5asgFViKxGY5zqVNSeNiU1CZ-A_8Q34JqYpgZDrp9Dz3nl5CjhkMGAA_XdjWDjjwFIAxuUN6THCe8Jzlu6TXASIRKnvcJwcxzgFAa5n3yOjCzpoCw5SWOMUWg3VrWvlAZ37hNwu_ivQMo3-lti3pJNRYYPP18Tmu3314qlsal9ZhPCR7lW0iHv3MPnm4upycXyfj-9HN-XCcOC65TBRolSqtq0LwtGTcpZplTAuACqXD7q2itEw6m2W5cLaQhRJWsTJXGlQlMO2Tk-3dZfDPK4wvZu5Xoe0iDdciB6G7gI4abCkXfIwBK7MM9cKGtWFgNmWZTVnmt6xO0FvhrW5w_Q9tbod3wz_3G4_wbhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956059983</pqid></control><display><type>article</type><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><source>Wiley Online Library All Journals</source><creator>Bourdaud, Gérard ; Moussai, Madani</creator><creatorcontrib>Bourdaud, Gérard ; Moussai, Madani</creatorcontrib><description><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202300117</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Banach spaces ; Composition ; composition operators ; Function space ; homogeneous Besov–Triebel–Lizorkin spaces ; Operators (mathematics) ; realizations ; Subspaces</subject><ispartof>Mathematische Nachrichten, 2024-03, Vol.297 (3), p.878-894</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202300117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202300117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Bourdaud, Gérard</creatorcontrib><creatorcontrib>Moussai, Madani</creatorcontrib><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><title>Mathematische Nachrichten</title><description><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></description><subject>Banach spaces</subject><subject>Composition</subject><subject>composition operators</subject><subject>Function space</subject><subject>homogeneous Besov–Triebel–Lizorkin spaces</subject><subject>Operators (mathematics)</subject><subject>realizations</subject><subject>Subspaces</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTjk7cWyP5asgFViKxGY5zqVNSeNiU1CZ-A_8Q34JqYpgZDrp9Dz3nl5CjhkMGAA_XdjWDjjwFIAxuUN6THCe8Jzlu6TXASIRKnvcJwcxzgFAa5n3yOjCzpoCw5SWOMUWg3VrWvlAZ37hNwu_ivQMo3-lti3pJNRYYPP18Tmu3314qlsal9ZhPCR7lW0iHv3MPnm4upycXyfj-9HN-XCcOC65TBRolSqtq0LwtGTcpZplTAuACqXD7q2itEw6m2W5cLaQhRJWsTJXGlQlMO2Tk-3dZfDPK4wvZu5Xoe0iDdciB6G7gI4abCkXfIwBK7MM9cKGtWFgNmWZTVnmt6xO0FvhrW5w_Q9tbod3wz_3G4_wbhM</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Bourdaud, Gérard</creator><creator>Moussai, Madani</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202403</creationdate><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><author>Bourdaud, Gérard ; Moussai, Madani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Banach spaces</topic><topic>Composition</topic><topic>composition operators</topic><topic>Function space</topic><topic>homogeneous Besov–Triebel–Lizorkin spaces</topic><topic>Operators (mathematics)</topic><topic>realizations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdaud, Gérard</creatorcontrib><creatorcontrib>Moussai, Madani</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdaud, Gérard</au><au>Moussai, Madani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2024-03</date><risdate>2024</risdate><volume>297</volume><issue>3</issue><spage>878</spage><epage>894</epage><pages>878-894</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202300117</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2024-03, Vol.297 (3), p.878-894
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2956059983
source Wiley Online Library All Journals
subjects Banach spaces
Composition
composition operators
Function space
homogeneous Besov–Triebel–Lizorkin spaces
Operators (mathematics)
realizations
Subspaces
title Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dahlberg%20degeneracy%20for%20homogeneous%20Besov%20and%20Triebel%E2%80%93Lizorkin%20spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bourdaud,%20G%C3%A9rard&rft.date=2024-03&rft.volume=297&rft.issue=3&rft.spage=878&rft.epage=894&rft.pages=878-894&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202300117&rft_dat=%3Cproquest_cross%3E2956059983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956059983&rft_id=info:pmid/&rfr_iscdi=true