Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces
We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2024-03, Vol.297 (3), p.878-894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 894 |
---|---|
container_issue | 3 |
container_start_page | 878 |
container_title | Mathematische Nachrichten |
container_volume | 297 |
creator | Bourdaud, Gérard Moussai, Madani |
description | We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0 |
doi_str_mv | 10.1002/mana.202300117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956059983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956059983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTjk7cWyP5asgFViKxGY5zqVNSeNiU1CZ-A_8Q34JqYpgZDrp9Dz3nl5CjhkMGAA_XdjWDjjwFIAxuUN6THCe8Jzlu6TXASIRKnvcJwcxzgFAa5n3yOjCzpoCw5SWOMUWg3VrWvlAZ37hNwu_ivQMo3-lti3pJNRYYPP18Tmu3314qlsal9ZhPCR7lW0iHv3MPnm4upycXyfj-9HN-XCcOC65TBRolSqtq0LwtGTcpZplTAuACqXD7q2itEw6m2W5cLaQhRJWsTJXGlQlMO2Tk-3dZfDPK4wvZu5Xoe0iDdciB6G7gI4abCkXfIwBK7MM9cKGtWFgNmWZTVnmt6xO0FvhrW5w_Q9tbod3wz_3G4_wbhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956059983</pqid></control><display><type>article</type><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><source>Wiley Online Library All Journals</source><creator>Bourdaud, Gérard ; Moussai, Madani</creator><creatorcontrib>Bourdaud, Gérard ; Moussai, Madani</creatorcontrib><description><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202300117</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Banach spaces ; Composition ; composition operators ; Function space ; homogeneous Besov–Triebel–Lizorkin spaces ; Operators (mathematics) ; realizations ; Subspaces</subject><ispartof>Mathematische Nachrichten, 2024-03, Vol.297 (3), p.878-894</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202300117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202300117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Bourdaud, Gérard</creatorcontrib><creatorcontrib>Moussai, Madani</creatorcontrib><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><title>Mathematische Nachrichten</title><description><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></description><subject>Banach spaces</subject><subject>Composition</subject><subject>composition operators</subject><subject>Function space</subject><subject>homogeneous Besov–Triebel–Lizorkin spaces</subject><subject>Operators (mathematics)</subject><subject>realizations</subject><subject>Subspaces</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTjk7cWyP5asgFViKxGY5zqVNSeNiU1CZ-A_8Q34JqYpgZDrp9Dz3nl5CjhkMGAA_XdjWDjjwFIAxuUN6THCe8Jzlu6TXASIRKnvcJwcxzgFAa5n3yOjCzpoCw5SWOMUWg3VrWvlAZ37hNwu_ivQMo3-lti3pJNRYYPP18Tmu3314qlsal9ZhPCR7lW0iHv3MPnm4upycXyfj-9HN-XCcOC65TBRolSqtq0LwtGTcpZplTAuACqXD7q2itEw6m2W5cLaQhRJWsTJXGlQlMO2Tk-3dZfDPK4wvZu5Xoe0iDdciB6G7gI4abCkXfIwBK7MM9cKGtWFgNmWZTVnmt6xO0FvhrW5w_Q9tbod3wz_3G4_wbhM</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Bourdaud, Gérard</creator><creator>Moussai, Madani</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202403</creationdate><title>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</title><author>Bourdaud, Gérard ; Moussai, Madani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2727-80983899fb523d12c391419500fe7ce000bda17ca4465cab7b85a81d68908f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Banach spaces</topic><topic>Composition</topic><topic>composition operators</topic><topic>Function space</topic><topic>homogeneous Besov–Triebel–Lizorkin spaces</topic><topic>Operators (mathematics)</topic><topic>realizations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdaud, Gérard</creatorcontrib><creatorcontrib>Moussai, Madani</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdaud, Gérard</au><au>Moussai, Madani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2024-03</date><risdate>2024</risdate><volume>297</volume><issue>3</issue><spage>878</spage><epage>894</epage><pages>878-894</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract><![CDATA[We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0<q≤1$0<q \le 1$ (Besov space), 0<p≤1$0<p \le 1$ (Triebel–Lizorkin space), Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is a quasi‐Banach algebra for the pointwise product, (ii) in case 1<s<1+(1/p)$1<s<1+(1/p)$, 1<p<∞$1<p<\infty$, 1≤q≤∞$1\le q\le \infty$, any function such that f′′$f^{\prime \prime }$ is a finite measure, and f(0)=0$f(0)=0$, acts by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$.]]></abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202300117</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2024-03, Vol.297 (3), p.878-894 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2956059983 |
source | Wiley Online Library All Journals |
subjects | Banach spaces Composition composition operators Function space homogeneous Besov–Triebel–Lizorkin spaces Operators (mathematics) realizations Subspaces |
title | Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dahlberg%20degeneracy%20for%20homogeneous%20Besov%20and%20Triebel%E2%80%93Lizorkin%20spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Bourdaud,%20G%C3%A9rard&rft.date=2024-03&rft.volume=297&rft.issue=3&rft.spage=878&rft.epage=894&rft.pages=878-894&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202300117&rft_dat=%3Cproquest_cross%3E2956059983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956059983&rft_id=info:pmid/&rfr_iscdi=true |