Dahlberg degeneracy for homogeneous Besov and Triebel–Lizorkin spaces
We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2024-03, Vol.297 (3), p.878-894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the composition operators Tf:g↦f∘g$T_f: g\mapsto f\circ g$ acting on the real‐valued homogeneous Besov or Triebel–Lizorkin spaces, realized as dilation invariant subspaces of S′(Rn)$\mathcal {S}^{\prime }({\mathbb {R}}^n)$, denoted as Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$. If s>1+(1/p)$s>1+ (1/p)$ and s≠n/p$s\not= n/p$, then any function f:R→R$f:{\mathbb {R}}\rightarrow {\mathbb {R}}$ acting by composition on Ap,qs(Rn)$\mathfrak {A}^s_{p,q}({\mathbb {R}}^n)$ is necessarily linear. The above conditions are optimal: (i) in case s=n/p$s=n/p$, 0 |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202300117 |